深度学习笔记--解决GPU显存使用量不断增加的问题

2025-09-03 08:13:54

世界杯歌

目录 1--问题描述 2--问题解决 3--代码 1--问题描述 基于 Pytorch 使用 VGG16 预训练模型进行分类预测时,出现 GPU 显存使用量不断增加,最终出现 cuda...

目录

1--问题描述

2--问题解决

3--代码

1--问题描述

基于 Pytorch 使用 VGG16 预训练模型进行分类预测时,出现 GPU 显存使用量不断增加,最终出现 cuda out of memory 的问题;

出现上述问题的原因在于:输入数据到网络模型进行推理时,会默认构建计算图,便于后续反向传播进行梯度计算。而构建完整的计算图,会增加计算和累积内存消耗,从而导致 GPU显存使用量不断增加;

由于博主只使用 VGG16 预训练模型进行分类预测,不需要训练和反向传播更新参数,所以不用构建完整的计算图。

2--问题解决

在推理代码中增加以下指令,表明当前计算不需要进行反向传播,即强制不进行完整计算图的构建:

with torch.no_grad():

...

...

3--代码

问题代码:

def extract_rgb_feature(rgb_data):

data = rgb_data.to(device_id[0]) # [40, 40, 3]

data = data.permute(2, 0, 1).unsqueeze(0) # [1, 3, 40, 40]

data = F.interpolate(data, size = (224, 224), mode='nearest').float() #[1, 3, 224, 224]

data = model(data) # [1, linear_Class]

return data

修正代码:

def extract_rgb_feature(rgb_data):

with torch.no_grad():

data = rgb_data.to(device_id[0]) # [40, 40, 3]

data = data.permute(2, 0, 1).unsqueeze(0) # [1, 3, 40, 40]

data = F.interpolate(data, size = (224, 224), mode='nearest').float() #[1, 3, 224, 224]

data = model(data) # [1, linear_Class]

return data

完整代码:

from torchvision import models

import torch.nn as nn

import torch

import numpy as np

import cv2

import torch.nn.functional as F

class My_Net(nn.Module):

def __init__(self, linear_Class):

super(My_Net, self).__init__()

self.linear_Class = linear_Class

self.backbone = models.vgg16(pretrained=True) # 以 vgg16 作为 backbone

self.backbone = self.process_backbone(self.backbone) # 对预训练模型进行处理

self.linear1 = nn.Linear(in_features = 4096, out_features = self.linear_Class)

def process_backbone(self, model):

# 固定预训练模型的参数

for param in model.parameters():

param.requires_grad = False

# 删除最后预测层

del model.classifier[6]

return model

def forward(self, x):

x = self.backbone(x)

x = self.linear1(x)

return x

linear_Class = 2

device_id = [7]

model = My_Net(linear_Class).to(device_id[0]) # 初始化模型

def extract_rgb_feature(rgb_data):

with torch.no_grad():

data = rgb_data.to(device_id[0]) # [40, 40, 3]

data = data.permute(2, 0, 1).unsqueeze(0) # [1, 3, 40, 40]

data = F.interpolate(data, size = (224, 224), mode='nearest').float() #[1, 3, 224, 224]

data = model(data) # [1, linear_Class]

return data

if __name__ == "__main__":

CSub_train_txt_path = '../statistics/CSub_train.txt'

CSub_test_txt_path = '../statistics/CSub_test.txt'

CSub_train_data_path = './2J_rgb_patch_npy_file_40x40/CSub/train/'

CSub_test_data_path = './2J_rgb_patch_npy_file_40x40/CSub/test/'

CSub_train_txt = np.loadtxt(CSub_train_txt_path, dtype = str)

CSub_test_txt = np.loadtxt(CSub_test_txt_path, dtype = str)

CSub_train_save_path = './pre_vgg_feature/2J/CSub/train.npy'

CSub_test_save_path = './pre_vgg_feature/2J/CSub/test.npy'

save_data = []

for (idx, name) in enumerate(CSub_test_txt):

data_path = CSub_test_data_path + name + '.npy'

rgb_data = np.load(data_path) # T, M, N, H, W, C

rgb_data = torch.from_numpy(rgb_data)#.to(device = device_id[0])

T, M, N, H, W, C = rgb_data.shape

Output = torch.zeros(T, M, N, 1, linear_Class)

for t in range(T):

for m in range(M):

for n in range(N):

data = extract_rgb_feature(rgb_data[t, m, n])

Output[t, m, n] = data.cpu()

save_data.append(Output)

print("Processing " + name + ", Done !")

np.save(CSub_test_save_path, save_data)

print("All done!")